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Multiplicative Gain Changes Are Induced by Excitation or
Inhibition Alone
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We model the effects of excitation and inhibition on the gain of cortical neurons. Previous theoretical work has concluded that excitation
or inhibition alone will not cause a multiplicative gain change in the curve of firing rate versus input current. However, such gain changes
in vivo are measured in the curve of firing rate versus stimulus parameter. We find that when this curve is considered, and when the
nonlinear relationships between stimulus parameter and input current and between input current and firing rate in vivo are taken into
account, then simple excitation or inhibition alone can induce a multiplicative gain change. In particular, the power–law relationship
between voltage and firing rate that is induced by neuronal noise is critical to this result. This suggests an unexpectedly simple mechanism
that may underlie the gain modulations commonly observed in cortex. More generally, it suggests that a smaller input will multiplica-
tively modulate the gain of a larger one when both converge on a common cortical target.
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Introduction
Gain modulation is a roughly multiplicative or divisive change in
the tuning curve of a neuron to one stimulus parameter as some
other parameter or state is modified. Such gain changes are ob-
served frequently in the responses of cortical neurons and are
thought to play an important role in neural computations (for
review, see Salinas and Thier, 2000). A particularly well studied
example exists in monkey posterior parietal cortex, in which the
responses of neurons to the retinal position of a visual stimulus
are multiplicatively scaled by eye position (Andersen and Mount-
castle, 1983; Andersen et al., 1985). Similar modulation of re-
sponses by eye position is seen in a variety of visual areas (Galletti
and Battaglini, 1989; Boussaoud et al., 1993; Bremmer et al.,
1997b; Trotter and Celebrini, 1999). This gain modulation has
been proposed to underlie coordinate transforms computed by
these neurons, which are necessary for visually guided reaching
(Zipser and Andersen, 1988; Salinas and Abbott, 1995, 2001;
Pouget and Sejnowski, 1997; Pouget and Snyder, 2000). Gain
modulations have also been observed in the enhancement of neu-
ral responses by attention. McAdams and Maunsell (1999a)
showed that attention can increase the gain of the orientation
tuning curves of neurons in areas V1 and V4 of macaque visual
cortex, whereas Treue and Martinez-Trujillo (1999) found that
attention increases the gain of direction tuning curves in ma-
caque area MT. Modulation of responses in V1 by stimuli outside
the classical receptive field seems to be divisive in character (Ca-

vanaugh et al., 2002; Palmer and Nafziger, 2002; Muller et al.,
2003). Gain modulation can also be induced pharmacologically.
Fox et al. (1990) found that by iontophoretically applying NMDA
to neurons in cat V1, they could increase the gain of the contrast–
response (CR) curve of the neuron.

Despite the apparent importance of multiplicative gain mod-
ulation in the cortex, the mechanisms responsible for producing
such gain changes are not well understood (but, see Srinivasan
and Bernard, 1976; Fox and Daw, 1992; Mel, 1993; Salinas and
Abbott, 1996; Chance et al., 2002; Doiron et al., 2002; Smith et al.,
2002). In particular, it has been concluded that simple excitation
or inhibition alone cannot achieve a gain change (Holt and Koch,
1997; Chance et al., 2002), except at low firing rates (Doiron et al.,
2001). Instead, it has been shown recently that concurrent, bal-
anced increases in background excitation and inhibition to-
gether, which cause an increase in current noise and in conduc-
tance with no net depolarization or hyperpolarization, can serve
to divisively decrease gain (Chance et al., 2002). These conclu-
sions were based on examining the gain of the relationship be-
tween injected current and firing rate. However, multiplicative
gain changes in cortex in vivo are observed in the relationship
between a “stimulus parameter” and firing rate. Here, we con-
sider the nonlinear relationship between stimulus parameter and
injected current, as well as the nonlinear relationship between
injected current and firing rate. We show that multiplicative gain
changes arise robustly from the simple addition of excitation or
inhibition alone, provided the modulating excitation or inhibi-
tion is small relative to the peak of the tuning curve of the driving
excitation. That is, the observed cortical gain changes can be in-
duced if the modulating influence simply adds or subtracts exci-
tation or inhibition.

An important part of our model is the large background syn-
aptic conductances to which neurons are subject in vivo, which
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give rise to a noisy subthreshold membrane potential (Destexhe
and Paré, 1999; Anderson et al., 2000). A noisy subthreshold
membrane potential in turn gives rise to an expansive power–law
relationship between the average membrane potential and the
firing rate of a neuron (Hansel and van Vreeswijk, 2002; Miller
and Troyer, 2002). This nonlinear relationship between voltage
or input current and firing rate, along with the nonlinear rela-
tionship between stimulus parameter and input current, together
cause excitation or inhibition alone to yield roughly multiplica-
tive gain changes in neuronal responses. We demonstrate this
using both numerical simulations and a simple analytical model.

Materials and Methods
We simulate a cortical neuron using two models: a conductance-based,
integrate-and-fire model and a Hodgkin–Huxley-type model.

Integrate-and-fire model. The integrate-and-fire model is described by
the following equation:

C
dV

dt
� gleak�Eleak � V� � �

i

gi�Ei � V� � Iinj, (1)

where C is the capacitance, gleak is the leak conductance and Eleak is its
reversal potential, Iinj is the injected current, and the gi are conductances
with corresponding reversal potentials Ei. When the voltage reaches the
spike threshold Vthresh , it is reset to Vreset and held there for a refractory
period (trefract).

The parameters for the integrate-and-fire model and its synaptic and
noise currents were selected to match cortical properties, primarily in the
course of previous work (Troyer and Miller, 1997; Troyer et al., 1998;
Krukowski and Miller, 2001; Palmer and Miller, 2002) but with minor
adjustments in the present work. In particular, the parameters were de-
signed without reference to (and before obtaining) the results presented
here. The values for the following parameters are the same in each sim-
ulation: gleak � 10 nS, C � 488 pF, Eleak � �70 mV, Vthresh � �54 mV,
Vreset � �60 mV, and trefract � 1.7 msec. The value of C was chosen so
that, after taking into account additional background (noise) conduc-
tances described below, the resting membrane time constant is 20 msec.
This is consistent with values of 15–24 msec observed in vivo for cortical
neurons (Hirsch et al., 1998).

There are two excitatory synaptic conductances, NMDA and AMPA,
and two inhibitory synaptic conductances, GABAA and GABAB. Their
reversal potentials are ENMDA � 0 mV, EAMPA � 0 mV, EGABAA

� �70
mV, and EGABAB

� �90 mV. The NMDA conductance is voltage depen-
dent in accordance with the model described by Jahr and Stevens (1990),
using [Mg2�] � 1.2 mM. The voltage we use to compute the NMDA
conductance is the “shadow voltage” Vs. Vs is obtained by integrating the
membrane potential continuously in time in the absence of a spike
threshold (e.g., it is not reset when it reaches the spike threshold). This is
meant to approximate the potential experienced by NMDA channels
located on the dendrites of the neuron and to eliminate discontinuities in
the conductance at spike times. This model yields an NMDA conduc-
tance that is 3.7% of maximum at the resting potential of the neuron
(where maximum is defined to be the conductance at a voltage of 100
mV) and 10.6% of maximum when Vs � �51 mV (the largest in this
study).

The time courses of AMPA, GABAA , and GABAB conductances after
presynaptic action potentials are modeled as a difference of single
exponentials:

g�t� � �
�tj

g��e��tj/�fall
� e��tj/�rise

�. (2)

Here, �tj is defined as (t�tj), where tj is the time of the jth presynaptic
action potential and tj � t. The time constants are �AMPA

rise � 0.25 msec,
�AMPA

fall � 1.75 msec, �GABAA

rise � 0.75 msec, �GABAA

fall � 5.25 msec, �GABAB

rise �
40 msec, and �GABAB

fall � 80 msec. Parameters for GABAergic synaptic
conductances are set to roughly match experimental data (Connors et al.,

1988; Benardo, 1994). NMDA conductances decay as a double exponen-
tial with a fast and slow component:

g�t, Vs� � �
�tj

g��Vs�� ffaste
��tj/�fast

fall

� fslowe��tj/�slow
fall

� e��tj/�rise
�.

(3)

Parameters for NMDA conductances are taken from experimental data
for adult rats (Carmignoto and Vicini, 1992): �fast

fall � 63 msec, �slow
fall � 200

msec, ffast � 0.88, and fslow � (1 � ffast ). We set �NMDA
rise � 5.5 msec to

match the experimentally observed 10 –90% rise time for NMDA
receptor-mediated postsynaptic currents (Lester et al., 1990).

The sizes of synaptic conductances evoked by presynaptic action po-
tentials are set in terms of their total conductance integrated over time in
units of nS�msec. The relative strengths of AMPA and NMDA conduc-
tances are set to match those observed in thalamocortical slices (Crair
and Malenka, 1995). This, along with [Mg2�] � 1.2 mM, yields the result
that, at Vthresh , the time integrated conductance for NMDA is 2.57 times
that of AMPA. The AMPA conductance evoked by a single excitatory
presynaptic action potential is set to 2.8 nS�msec. At Vthresh , the evoked
NMDA conductance is 7.2 nS�msec. The GABAA conductance resulting
from a single inhibitory presynaptic action potential is set to 8 nS�msec,
and the GABAB conductance to 2 nS�msec.

In addition to the above described synaptic conductances, the model
includes two fluctuating background conductances, an inhibitory con-
ductance [gI(t)] with Erev � �80 mV and an excitatory conductance
[gE(t)] with Erev � 0 mV. These conductances are meant to simulate the
background synaptic input received by cortical neurons in vivo. They are
produced by an Ornstein–Uhlenbeck process, as described by Destexhe
et al. (2001):

dg�t�

dt
�

g0 � g�t�

�
� ��t���2

�
, (4)

where g0 is the mean conductance, � is a noise time constant, �2 is the
variance of the conductance, and �(t) is a Gaussian random variable with
0 mean and a SD of 1. Parameters were chosen by beginning with the
parameters used by Palmer and Miller (2002) and adjusting these to
produce membrane potential fluctuations of �5 mV at rest and a rest
potential of approximately �70 mV. This is in accordance with record-
ings from cortical cells in vivo (Anderson et al., 2000). For the inhibitory
background conductance, g0 � 12.0 nS, � � 34.1 msec, and � � 4.3 nS.
For the excitatory background conductance, g0 � 2.4 nS, � � 34.1 msec,
and � � 2.4 nS. The noise time constant of 34.1 msec was chosen to cause
the power spectrum of the voltage noise to match that seen in experimen-
tal data generously provided by Jeff Anderson and David Ferster (North-
western University, Evanston, IL) (this matching was performed by S. E.
Palmer in the laboratory of K.D.M.) (Palmer and Miller, 2002). The
mean background conductance, combined with gleak , gives the cell a
resting input resistance (R) of 41 M	. The capacitance (C) is set to give
the cell a resting membrane time constant (�m � RC) of 20 msec.

Hodgkin–Huxley model. Simulations of a more biophysically detailed
single compartment model were produced using the NEURON simula-
tion environment (Hines and Carnevale, 1997). This model includes
fluctuating background conductances produced by an Ornstein–Uhlen-
beck process, voltage-dependent sodium and potassium conductances to
model action potentials, and a noninactivating potassium conductance
responsible for spike frequency adaptation as described by Destexhe et al.
(2001) for a single compartment neuron model. Parameters for the
model were taken from Destexhe et al. (2001): gleak � 0.045 mS/cm 2,
Eleak � �80 mV, C � 1 �F/cm 2. For the inhibitory background conduc-
tance, g0 � 57.0 nS, � � 10.5 msec, and � � 15.84 nS. For the excitatory
background conductance, g0 � 12 nS, � � 2.7 msec, and � � 7.2 nS. The
densities of voltage-dependent sodium and potassium channels are 480
pS/�m 2 and 100 pS/�m 2, respectively. The density of spike adaptation
potassium channels is 3 pS/�m 2. The surface area of the simulated neu-
ron is 34,636 �m 2.

The model also includes a hyperpolarization-activated conductance
(Ih ) with kinetics modeled as described by Migliore (2003). This conduc-
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tance has a reversal potential of �43 mV (Stuart and Spruston, 1998) and
a density of 0.05 mS/cm 2.

Results
Our results are divided into three sections. First, we present the
results of a series of numerical simulations of a single model
neuron of the visual cortex. The model neuron is a conductance-
based integrate-and-fire neuron. Its input includes noise conduc-
tances designed to match voltage noise observed in vivo (Ander-
son et al., 2000), which make the RMS voltage noise �5 mV. In
the second section, we provide a simplified, but more intuitive,
analytical model of the neuron that shows the generality and
robustness of the results obtained with the integrate-and-fire
model. Finally, to further illustrate the robustness of the results,
we show that the assumptions of the analytical model and the
results of the integrate-and-fire model all hold for a more bio-
physically detailed Hodgkin–Huxley-type model neuron that
also receives noise conductances. This model includes conduc-
tances responsible for spike generation and spike frequency ad-
aptation, as well as a subthreshold hyperpolarization-activated
conductance (Ih ). We refer to the two numerical models as either
the integrate-and-fire model or the Hodgkin–Huxley model.

Gain is defined here as the slope of a plot of a stimulus param-
eter, such as contrast or orientation, versus the response of the
neuron. A pure gain change is one in which the curve of response
versus stimulus parameter is multiplicatively scaled, so that the
gain is scaled by a constant factor for all values of the stimulus
parameter.

Integrate-and-fire simulations
Contrast–response curve gain
Neurons in the visual cortex respond to stimuli of increasing
contrast with an increasing firing rate. Plots of contrast versus
firing rate are often well fit by a hyperbolic ratio function (Al-
brecht and Hamilton, 1982; Sclar et al., 1990):

R � Rmax� C n

C n � C50
n� � S, (5)

where C is the contrast, R is the firing rate, S is the spontaneous
activity, and C50 is the contrast that gives a half-maximal
stimulus-induced firing rate. We refer to a plot of contrast versus
firing rate as a CR curve. The gain of the neuron is the slope of the
CR curve.

We assume that our model neuron receives a stimulus-driven
excitatory Poisson input. The rate of this input is a hyperbolic
ratio function of stimulus contrast, with Rmax � 2000 Hz, C50 �
0.133, n � 1.2, and S � 0. This is designed to model synaptic
input from a previous stage of visual processing. We then study
how the gain of the response of the model neuron to the stimulus
is altered by additional excitation or inhibition in the form of
glutamate or GABA receptor-binding drugs or direct injected
current.

Iontophoresis. We modeled iontophoretic application of drugs
binding to NMDA, AMPA, GABAA , or GABAB receptors by
opening a constant conductance of the appropriate type and
studied the effects on the CR curve of the neuron (Fig. 1A).

We first simulated the iontophoresis of NMDA onto the neu-
ron by opening a constant NMDA conductance equivalent to 10
nS if the neuron were held at �100 mV. Because of the voltage
dependence of NMDA channels, the mean iontophoretic NMDA
conductance is 0.48 nS at zero contrast and increases to 1.1 nS at
maximum contrast. This conductance increased the firing rate of

the model neuron at all contrasts. The maximum firing rate (at
C � 1.0) increased to 50 Hz from 34 Hz in the baseline curve. The
firing rate at C � 0.0 increased to 0.96 Hz from 0.26 Hz. This
corresponds to a 46% increase in the average slope of the CR
curve. One might imagine that this slope increase is caused by the
voltage-dependent increase of the NMDA conductance. How-
ever, when we simulated the iontophoresis of AMPA by opening
a constant 1.0 nS AMPA conductance, we observed a similar
increase in firing rates. The maximum firing rate increased to 48
Hz, and the firing rate at C � 0.0 increased to 0.81 Hz. The
average slope of the CR curve increased by 40%. Because the
AMPA conductance is not voltage dependent, this implies an-
other mechanism of gain change.

We next simulated the iontophoresis of inhibitory drugs bind-
ing to GABAA or GABAB receptors. In both cases, the firing rate of
the model neuron was reduced at all contrasts. A constant 2.0 nS
GABAA conductance decreased the maximum firing rate from 34
to 28 Hz and the firing rate at C � 0.0 from 0.26 to 0.15 Hz. The
average slope of the CR curve decreased by 17%. A constant 2.0
nS GABAB conductance had a larger effect, decreasing the maxi-
mum firing rate to 20 Hz and the firing at C � 0.0 to 0.06 Hz. The
average slope decreased by 41%. The different effects of GABAA

and GABAB can be attributed to their different reversal
potentials.

We scaled the iontophoretic CR curves to optimally fit the
baseline curve (Fig. 1B). The overlap of the scaled CR curves
indicates that changes in the firing rate caused by iontophoretic
conductances are very close to pure, multiplicative gain changes.
Nonetheless, there are clearly systematic deviations from a purely
multiplicative scaling. These deviations are made clear by analyz-
ing the fits of the CR curves to hyperbolic ratio functions (Fig. 1A,
solid lines). Fit parameters are given in Table 1. The most signif-
icant of these deviations are left and right shifts of the CR curve,
indicated by changes in C50 (Eq. 5). NMDA and AMPA conduc-
tances shifted the baseline curve left, decreasing C50 by 11 and
13%, respectively. GABAA and GABAB shifted the curve right,
increasing the baseline C50 by 6 and 17%, respectively. NMDA
and AMPA also increased spontaneous activity (C � 0.0) some-
what, whereas GABAA and GABAB reduced it.

Figure 1. A, Plot of contrast versus firing rate for the model neuron without drugs (open
circles), and with iontophoretic NMDA (open squares), AMPA (open triangles), GABAA (closed
squares), or GABAB (closed triangles) applied. Each data point represents an average of 20 60 sec
trials. Solid lines are fits of the data to a hyperbolic ratio function (Eq. 5). Parameters for the fits
were obtained using a nonlinear least squares algorithm and are shown in Table 1. B, Curves
from A scaled to optimally (least squares) fit the Base curve.
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Injected current. In our model, iontophoresis causes both po-
larizing ionic current and changes in conductance. The conduc-
tance changes are small relative to the mean resting conductance
of the neuron of �24 nS, rendering it unlikely that the conduc-
tance changes are a significant cause of the gain change. However,
to directly separate the effects of injected current and conduc-
tance change, we next simulated the direct injection of current
into the model neuron.

The effects of current injection on CR curves are very much
like the effects of iontophoretic drugs (Fig. 2). Injection of depo-
larizing current into the neuron has effects similar to an ionto-
phoretic AMPA or NMDA conductance. Current (50 pA) in-
creased the maximum firing rate from 34 to 47 Hz and the firing
rate at C � 0.0 from 0.26 to 0.73 Hz. The average slope of the CR
curve increased by 37%. Conversely, injection of the hyperpolar-
izing current has effects similar to an iontophoretic GABAA or
GABAB conductance. Current (�50 pA) decreased the maxi-
mum firing rate to 24 Hz and the firing rate at C � 0.0 to 0.09 Hz.
The average slope of the CR curve decreased by 29%.

The changes in firing rate caused by injected current are close
to purely multiplicative gain changes (Fig. 2B). Deviations from
purely multiplicative changes are indicated by the fit parameters
in Table 2. These deviations are in the same direction and of
similar magnitude to those seen above for iontophoresis. Positive
current shifted the baseline CR curve left, decreasing C50 by 12%.
Negative current shifted the curve right, increasing the baseline
C50 by 12%. These results imply that polarizing current, and not
a change in conductance, is the primary factor responsible for
changing the gain of the model neuron.

Our model of the effects of injecting current can be directly

compared with existing in vivo data. Sanchez-Vives et al. (2000)
examined the effect on visual cortical CR curves of injecting a
hyperpolarizing current into the cell (Fig. 3A). Effects in the
model are strikingly similar (Fig. 3B). The simulation produces a
more purely multiplicative effect than is seen in the average ex-
perimental data (Fig. 3D), but the deviations are in the same
directions in simulation as in the data. In particular, the hyper-
polarization induces a statistically significant (Sanchez-Vives et
al., 2000) increase in C50 in the experimental data, as predicted by
the model. It should be noted that the experimental data are
averaged over many cells; if each cell were modulated multiplica-
tively but different cells had different CR curves and were mod-
ulated by different factors, then the modulation of the average
would not be purely multiplicative. Thus, it is possible that indi-
vidual cells show a more purely multiplicative effect than the
average data. In any case, the overall resemblance suggests that

Table 1. Values of the fit parameters for the solid lines in Figure 1A and the scale
factors used in Figure 1B

Rmax C50 n S Scale

Base 39.5 0.325 1.66 0.0600 1.00
NMDA 56.5 0.290 1.61 0.452 1.50
AMPA 54.1 0.280 1.58 0.632 1.46
GABAA 32.5 0.346 1.71 �0.0294 0.800
GABAB 24.0 0.381 1.78 �0.0760 0.565

Parameters are defined in Equation 5.

Figure 2. A, Plot of contrast versus firing rate for the model neuron without injected current
(circles) and with �50 pA (squares) or �50 pA (triangles) of current injected. Each data point
represents an average of 20 60 sec trials. Solid lines are fits of the data to a hyperbolic ratio
function (Eq. 5). Parameters for the fits are shown in Table 2. B, Curves from A scaled to optimally
(least squares) fit the Base curve.

Table 2. Values of the fit parameters for the solid lines in Figure 2A and the scale
factors used in Figure 2B

Rmax C50 n S Scale

Base 39.5 0.325 1.66 0.0600 1.00
�50 pA 52.7 0.285 1.59 0.536 1.41
�50 pA 27.7 0.365 1.76 �0.0751 0.667

Parameters are defined in Equation 5.

Figure 3. A, Replotted data from Sanchez-Vives et al. (2000, their Fig. 12A), demonstrating
the effects of hyperpolarizing injected current on the CR functions of neurons in primary visual
cortex. Circles, Curves with no injected current; triangles, curves with hyperpolarizing current
injected. B, Our simulated CR curves. Control curve (circles) uses input parameters Rmax � 1400
Hz, C50 � 0.08, n � 1.6, and S � 600 Hz, designed to reproduce control curve in A. Curve with
hyperpolarizing current (triangles) used current of �90 pA, designed to produce a similar
reduction of Rmax as in A. Each data point represents an average of 20 60 sec trials. C, D, Plots
from A and B with the hyperpolarized curve scaled to optimally (least squares) match the control
curve. Data in A are averages over multiple cells studied over four octaves of contrast; we have
plotted the four octaves as 5– 80%. Solid lines are fits of the data to a hyperbolic ratio function
(Eq. 5). Fit parameters for the model are Rmax � 39 Hz, C50 � 0.13, n � 1.8, and S � 2.3 Hz
without and Rmax � 24 Hz, C50 � 0.15, n � 1.9, and S � 0.6 Hz with hyperpolarizing current.
Fit parameters for the experimental data are Rmax � 38 Hz, C50 � 0.15, n � 1.9, and S � 3.7
Hz without and Rmax � 24 Hz, C50 � 0.2, n � 2.5, and S � 1.8 Hz with hyperpolarizing current.
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our simple model gives a reasonable representation of neurons in
vivo.

Tuning curve gain
A number of influences, including attention and eye position,
have been shown to change the gain of tuning curves in cortex.
Although the mechanisms by which these gain changes occur are
not clear, we demonstrate that, in our model neuron, one synap-
tic input can modulate the gain of the response to another. To do
so, we introduce two Poisson inputs to the neuron. The first is an
excitatory driving input, the rate R of which is a Gaussian func-
tion of an arbitrary stimulus parameter �:

R�� � � Rmaxexp��
�2

2�2� � S. (6)

The second is a modulatory input, either excitatory or inhibitory,
the rate of which is independent of �. For the driving input, � �
1.0, Rmax � 2000 Hz, and S � 0 Hz.

We constructed tuning curves for the model neuron by plot-
ting average firing rate versus �, with and without modulatory
inputs (Fig. 4A). The driving input alone produced a maximum
firing rate at � � 0.0 of 41 Hz and a minimum firing rate at � �

3 of 0.29 Hz. We then added modulatory inputs to the neuron.
A 250 Hz excitatory input increased the firing rate of the neuron
for all values of �. The maximum response increased to 55 Hz,
and the firing rate at � � 
3 increased to 0.86 Hz. A 250 Hz
inhibitory input decreased the firing rate of the model neuron for
all values of �. The maximum firing rate decreased to 31 Hz, and
the firing rate at � � 
3 decreased to 0.12 Hz.

We scaled the tuning curves with modulatory input to best fit
the baseline tuning curve (Fig. 4B). As in Figures 1 and 2, the
tuning curves with modulatory input can be scaled to nearly fit
the baseline curve. Parameters for Gaussian fits of the data in
Figure 4A are shown in Table 3. These fits show that, in addition
to the multiplicative scaling, there are systematic changes in the
width of the tuning curve caused by modulatory input. Excitatory
modulation caused an 8% increase in the width of the tuning
curve. Inhibitory modulation caused a 6% decrease in the width
of the tuning curve.

Results obtained by injecting constant current, instead of add-
ing a modulatory Poisson input, are very similar (data not
shown). None of the modulatory inputs used in any of these
simulations had an affect on the response variability of the model
neuron as measured by the coefficient of variation of interspike
intervals.

Although we have chosen the parameters for the integrate-
and-fire model carefully to match the experimentally measured
properties of cortical neurons, our results do not depend on the
detailed parameters of the simulations. For example, nothing
qualitatively changes if the membrane time constant is doubled
or halved (by correspondingly changing the capacitance) or if the
stimulus-dependent Poisson input is replaced by an injected cur-
rent (so long as the amplitude of the current remains the same
nonlinear function of the stimulus parameter). The reason for
this robustness is shown by the following simple analytical model,
which shows the more general conditions required for these re-
sults to hold.

Analytical model
We express the state of the neuron in terms of the “shadow volt-
age,” defined to be the voltage the neuron would have if it did not
spike or undergo postspike voltage resets. The effect of the
voltage noise in the model neuron is to make the firing rate f of
the neuron depend on its mean shadow voltage V as a power
law (Hansel and van Vreeswijk, 2002; Miller and Troyer, 2002)
(Fig. 5):

f � kV	. (7)

Figure 4. A, Plot of the tuning parameter in Equation 6 versus firing rate for the model
neuron without modulatory input (circles) and with a modulatory 250 Hz excitatory
(squares) or 250 Hz inhibitory (triangles) Poisson input. Each data point represents an
average of 20 60 sec trials. Solid lines are fits of the data to a Gaussian function (Eq. 6).
Parameter values for the fits are shown in Table 3. B, Curves from A scaled to optimally
(least squares) fit the Base curve.

Table 3. Values of the fit parameters for the solid lines in Figure 4A and the scale
factors used in Figure 4B

Rmax � S Scale factor

Base 41.0 0.622 0.508 1.00
250 Hz Exc 54.3 0.669 1.14 1.39
250 Hz Inh 30.4 0.588 0.235 0.715

Parameters are defined in Equation 6. Exc, Excitatory; Inh, inhibitory

Figure 5. A plot of the average shadow voltage versus firing rate (circles) for the model
neuron driven by an excitatory Poisson input (the same input as the Base curve in Fig. 1). Each
data point represents an average of 20 60 sec trials. The voltage axis is shifted such that Vrest is
0 mV. The solid line is a fit of f � kV 	 to the data, with k � 0.0025 Hz/[mV]	 and 	� 3.4. The
shadow voltage is the voltage the neuron would have if spiking and postspiking reset were
ignored (see Results).
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Here, 	 is �3.4. Furthermore the shadow voltage is linear in the
mean input, so it can be thought of as a function of a driving input
and a modulatory input:

V � d� p� � m. (8)

The modulatory input m is a constant, whereas the driving input
d( p) is a function of an input parameter p. In our numerical
simulations, p corresponds to either contrast or the tuning pa-
rameter �. Likewise, m corresponds to iontophoretic application
of drugs, injected current, or modulatory synaptic inputs. Using
these two equations, we obtain an expression for firing rate with
respect to d( p) and m:

f � k�d� p� � m�	. (9)

This equation is already sufficient to largely explain the results of
our simulations. Letting d( p) be a sigmoid (Fig. 6A) or a Gauss-
ian (Fig. 6B), we can compare k(d( p)) 	 (Fig. 6, solid lines) with
k(d( p) � m) 	 for positive m, renormalized to best match
k(d( p)) 	 (Fig. 6, dotted lines). Here, positive m represents an
excitatory modulatory input. We find that the effect of excitatory
modulation is to approximately multiply a sigmoidal CR curve,
but with a slight left shift of the curve (Fig. 6A), and to approxi-
mately multiply a Gaussian tuning curve, but with a slight wid-
ening of the curve (Fig. 6B). In both cases, the result of the simple
model given by Equation 9 is essentially identical to the results of
the integrate-and-fire simulations.

To further understand why Equation 9 leads to a gain change,
we define the gain as the derivative of the firing rate with respect
to the input parameter. Taking the derivative of Equation 9 with
respect to p, we obtain an expression for the gain:


f


p
� k	�d� p� � m�	�1


d� p�


p
. (10)

Because 	 � 1 the gain is directly related to the modulatory input,
m.

However, Chance et al. (2002) point out that a change in

f


p
for a given p can arise from either a “true” gain change or a simple
left or right shift of the nonlinear f versus p curve. To distinguish

between these two cases, they plot

f


p
versus f. Using Equation 9

we can rewrite Equation 10 as:


f


p
� k	� f

k�
	�1

	 
d� p�


p
. (11)

When d( p) is linear in p,

d�p�


p
is a constant. Therefore


f


p
has no

dependence on m, and changes in modulatory inputs (m) do not
affect the gain. This can be seen more directly from Equation 9: if
d( p) � ap � b, then f � k(ap � b � m) 	, so that m simply left
or right shifts the curve of f versus p without changing its shape.
In the study by Chance et al. (2002), the driving input is an
injected current and d( p) is a linear function of p. In our results,
and in many biologically relevant situations, d( p) is not linear. In

this case,

d�p�


p
in Equation 11 is not constant but depends on p;

when reexpressed in terms of f, there will also be a dependence on

m. That is, the value of

f


p
as a function of f depends on m. Thus,

changes in modulatory inputs do not simply shift the f versus p
curve, they change its gain, its slope for a given value of f.

The gain changes observed in our numerical simulations are
very nearly multiplicative; the slope at each point is changed by
roughly the same factor. The above arguments explain why there
should be a gain change but not why it should be nearly multipli-
cative. To make this more clear, it is useful to look at the expan-

sion of Equation 9 to first order in
m

d�p�
:

k�d� p� � m�	 � k�d� p�	 � 	md� p�	�1�. (12)

With no modulatory input, m � 0, the firing rate is simply
kd( p) 	. If a non-zero modulatory input had a purely multipli-
cative effect on firing rate, we would expect it to add to the firing
rate an amount proportional to d( p) 	. Equation 12 shows that a
non-zero m actually adds an amount proportional to d( p) 	�1.
Thus, the multiplicative effects of modulatory inputs in our
model depend on d( p) 	�1 being similar in shape to d( p) 	,
which in turn depends on 	 being substantially larger than 1. Of
course, d( p) 	 and d( p) 	�1 cannot be perfectly identical in shape
unless d( p) is a constant, so small discrepancies from a perfectly
multiplicative scaling are predicted; similar discrepancies are
seen in some experimental results, as addressed in Discussion.

From the inputs represented in our simulations, the relation-
ship between d( p) 	 and d( p) 	�1 is most easily seen when d( p)

is a Gaussian function. In this case, d�p�	 � exp��	
p2

2�2� and

d�p�	�1 � exp���	 � 1�
p2

2�2�. So, when m � 0, the firing rate

of the neuron is a Gaussian, which is narrower than the Gaussian
input d( p) by a factor of �	. A positive m adds an amount
proportional to a slightly wider Gaussian (narrower than the
Gaussian input by a factor of �	�1). This produces a new tun-
ing curve that is multiplicatively scaled and wider than the curve
with m � 0 by an amount that depends on m and 	. The width
should increase by an amount no less than zero and no more than

a factor of
�	

�	 � 1
. For 	 � 3.4, the width should increase no

more than 19%, which is consistent with results from the

Figure 6. Plots of Equation 9 with 	 � 3.4 and k � 1.0 Hz/[mV]	. The solid lines corre-
spond to m � 0 mV, and the dashed lines correspond to m � 0.15 mV. The dotted lines are the
m � 0.15 mV curves optimally (least squares) scaled to fit the m � 0 mV curves. A, d(p) is a
hyperbolic ratio function with C50 � 0.133, n � 1.2, and Rmax � 1.0 mV. B, d(p) is a Gaussian
with � � 1.0 and an amplitude of 1.0 mV.
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integrate-and-fire simulation in which modulatory excitation in-
creased the width of the tuning curve by 8%, consistent with the
slight widening observed in Figure 6B.

The relationship between d( p) 	 and d( p) 	�1 is less clear
when d( p) is a hyperbolic ratio function. However, it is easy to

show that if d�p�
Cn

Cn � C50
n , then [d( p)] 	 reaches its half-

maximum at C �
C50

n

�2
1

	 � 1�
1

n

, which increases with increasing 	.

That is, d(p)	�1 should reach its half-maximum at a slightly lower
value of C than d(p)	, so that adding d(p)	�1 to d(p)	 should cause
a slight left-shifting of the sigmoid curve. This is the result of excita-
tory modulation as seen in simulations and in Figure 6A.

The approximation in Equation 12 is justified in cases when
m/d( p) is small. Clearly, this is not always the case in our simu-
lations; for instance, d( p) goes to zero when the contrast is zero.
In this case, the value of the function goes to km 	, and the relative
error of the approximation is very large. However, as long as m is
sufficiently small, the absolute error is small and the approxima-
tion is useful. The usefulness of this approximation in describing
our numerical results is shown in Fig. 7, which plots the right side
of Equation 12 using values for d( p) and m taken from our
integrate-and-fire simulations. d( p) is simply the mean shadow
voltage (without modulatory inputs) of the model neuron in the
simulated CR and tuning curves. m is the mean difference be-
tween the shadow voltage of the neuron with a modulatory input
and the baseline. The firing rates reconstituted using Equation 12
(Fig. 7, solid lines) correspond well with the actual firing rates in
the integrate-and-fire simulations (Fig. 7, symbols). This indi-
cates that this approximation is a reasonable one for describing
these simulations.

The analytical model assumes that inputs cause additive
changes in the shadow voltage. This is true for input currents.
However, input conductances need not translate additively into

input currents. To completely describe the effects of an input
conductance, one has to consider reversal potential effects by
which the current flowing through a conductance depends not
only on the size of the conductance but also on the driving force.
As such, the analytical model does not completely account for the
effects of conductances, particularly shunting inhibitory conduc-
tances with reversal potentials close to rest. Nonetheless, we have
found that shunting (GABAA) conductances behave similarly to
injected currents in our numerical model, causing multiplicative
changes in the curve of stimulus parameter versus firing rate. This
is probably because, over the range of shadow voltages for which
the firing rate of the neuron is significantly different from zero,
the changes in the driving force are relatively small. Similar argu-
ments (Holt and Koch, 1997) lead to the result that shunting
conductances, like injected currents, have an additive effect on
the curve of input current versus firing rate (Holt and Koch, 1997;
Chance et al., 2002).

We are arguing that the addition of two inputs, followed by
raising to a power, gives an approximate multiplication. If the
input– output function were an exponential (Gabbiani et al.,
2002) rather than a power law, this relationship would be exact:
e a�b � e ae b. This raises the question of whether a better analytic
approximation to our results might be given by an exponential
rather than a power law. However, an exponential input– output
relationship for the stimulus-induced firing rate must have the
form f � k(e V � 1) so that f � 0 when V � 0 (where 0 represents
rest). We tried fitting a function of this form to the input– output
relationship of the neuron but the fit is visibly considerably worse
than that shown in Figure 5 for a power law. Furthermore the fits
to the simulation data using this equation (equivalents of Figs. 6
and 7) are quite poor, particularly for excitatory modulatory in-
put. We conclude that the power law gives the better description
of our simulations.

The success of this simple analytical model in describing the
more complex biophysical model used in simulations demon-
strates the robustness of our results. The analytical model shows
that achievement of multiplicative gain modulation depends on
only two features of the biophysical model: the shadow voltage
should be a roughly linear function of the mean input, and the
output rate should be a power law of the shadow voltage with an
exponent significantly larger than 1. These are both attributes of
a wide variety of biophysical models with a wide variety of param-
eters. In particular, the robustness with which noise induces a
power law in a series of models has been demonstrated previously
(Hansel and van Vreeswijk, 2002; Miller and Troyer, 2002), and
we have also verified this: the power 	 � 3.39 found in our
integrate-and-fire model becomes 	 � 3.33 if only AMPA and no
NMDA is used for excitatory currents; 	 � 4.06 if the time con-
stant is doubled; and 	 � 3.16 if the time constant is halved (the
time constant was manipulated by changing the capacitance),
with excellent fits of a power law in all cases. The change in 	 with
a change in time constant is as expected theoretically: it has been
shown that 	 should primarily depend on the distance from rest
to threshold in units of the SD of the noise (Miller and Troyer,
2002); doubling the time constant decreases the noise and hence
increases this distance, which increases 	, whereas halving the
time constant increases the noise and hence decreases this dis-
tance, which decreases 	.

Do these two features hold for real cortical neurons? The as-
sumption that the voltage of a neuron is approximately a linear
sum of its inputs is often made, and, indeed, it is under this
assumption that a mechanism of gain modulation by inhibition
or excitation alone has proven elusive; if inputs can multiplica-

Figure 7. Comparison of predictions of Equation 12 (solid lines) to results of simulations
(symbols). Solid lines are plots of the right side of Equation 12 using values for d(p) and m taken
from the numerical simulations. The values of K and 	 are the same as in Figure 5. d(p) is the
mean shadow voltage of the baseline curve without modulation. m is the mean difference
between the shadow voltage of the curve with modulation and the baseline curve. Symbols are
the same as shown in Figures 2A and 4A. A, d(p) and m taken from CR curves generated by
numerical simulation (Fig. 2). B, d(p) and m taken from tuning curves generated by numerical
simulation (Fig. 4). Circles, Tuning curves without modulatory input; squares, tuning curves
with 50 pA injected current (A) or with 250 Hz excitatory Poisson input (B); triangles, tuning
curves with �50 pA injected current (A) or 250 Hz inhibitory Poisson input (B).
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tively influence one another, multiplicative gain modulations are
likely to be easier to attain. Nonetheless, our model provides such
a mechanism under the assumption of linear input summation.
Much evidence exists that summation in cortical or hippocampal
pyramidal neurons can be linear (Jagadeesh et al., 1993, 1997;
Cash and Yuste, 1998, 1999). However, pyramidal neurons con-
tain voltage-dependent conductances that can affect the summa-
tion of inputs (for review, see Reyes, 2001) and can cause inputs
to summate in a nonlinear manner (Schwindt and Crill, 1998;
Nettleton and Spain, 2000; Wei et al., 2001). In addition, den-
dritic integration can be nonlinear, although nonlinear conduc-
tances can correct this and linearize dendritic integration (Ber-
nander et al., 1994; Cash and Yuste, 1998, 1999). A recent
modeling study suggests that integration of multiple inputs on a
single thin apical dendrite may be nonlinear but that integration
between dendrites is remarkably linear (Poirazi et al., 2003a,b).

The second key assumption, of a power–law relationship be-
tween voltage and firing rate, seems likely to hold in many cortical
neurons. This is a general outcome of the presence of neural noise
in a variety of neural models (Hansel and van Vreeswijk, 2002;
Miller and Troyer, 2002), and many studies indicate the presence
of substantial voltage noise in cortex (Arieli et al., 1996; Paré et al.,
1998; Azouz and Gray, 1999; Tsodyks et al., 1999; Anderson et al.,
2000; Hô and Destexhe, 2000). More specific evidence is pro-
vided by the finding by Anderson et al. (2000) that voltage noise
can transform contrast-invariant voltage tuning into contrast-
invariant spiking tuning in visual cortical neurons. As shown by
Miller and Troyer (2002), a power–law transformation from
voltage to spiking rate is the only such transformation that can
achieve this, thus indicating that such a transformation is found
in visual cortical cells.

The above arguments suggest that the two assumptions of our
model may hold in many cortical cells. To provide further evi-
dence that our proposed mechanism of gain modulation can
apply to real cortical neurons, we now present numerical simu-
lations of a model that includes some of the more detailed bio-
physical properties of cortical pyramidal neurons.

Hodgkin–Huxley simulations
The Hodgkin–Huxley neuron model includes three potentially
important conductances not present in our integrate-and-fire
simulations: voltage-activated spiking conductances, a spike fre-
quency adaptation conductance, and a hyperpolarization-
activated mixed cation conductance (Ih ). To demonstrate that
the mechanism of gain change we are proposing is valid in this
neuron model, we first show that the mean voltage of the neuron
is approximately a linear function of the input it receives and that
the firing rate of the neuron is related to the mean voltage by a
power law. We then generate CR and Gaussian tuning curves for
the model neuron with and without modulatory inputs. These
curves are generated in the same way as the curves in the
integrate-and-fire simulations presented above, but for simplic-
ity the synaptic inputs (both modulatory and driving inputs)
have been replaced with constant excitatory (Erev � 0 mV) or
inhibitory (Erev � �80 mV) conductances. Replacing these in-
puts with injected currents yields very similar results (data not
shown).

Input– output relationship
A power–law relationship between mean voltage and firing rate
has been reported previously for a Hodgkin–Huxley-type model
neuron (Hansel and van Vreeswijk, 2002) with a noisy membrane
potential. We confirm that this relationship is also present in the

model neuron studied here (Fig. 8B). The mean voltage of the
model neuron is related to the output firing rate by a power law
with 	 � 2.98 and k � 0.024. In addition we find that the rela-
tionship between excitatory input conductance and mean voltage
is roughly linear over this range of output firing rate (Fig. 8A),
although some deviation from linearity is seen as voltage ap-
proaches threshold.

CR curve
We construct a CR curve by introducing a stimulus-driven exci-
tatory conductance, the magnitude of which is a hyperbolic ratio
function of contrast with parameters Rmax � 20 nS, C50 � 0.133,
n � 1.2, and S � 0 (see Eq. 5). The modulatory inputs do not vary
with contrast and are either a 3.5 nS excitatory conductance or a
8.5 nS inhibitory conductance.

Modulatory inputs have an effect on the CR curve very similar
to that in the integrate-and-fire model (Fig. 9, compare Fig. 2). A
3.5 nS excitatory conductance increased the maximum firing rate
from 36 to 49 Hz and the firing rate at C � 0.0 from 0.7 to 2.3 Hz.
The average slope of the CR curve increased by 32%. A 8.5 nS
inhibitory conductance decreased the maximum firing rate to 25
Hz and the firing rate at C � 0.0 to 0.18 Hz. The average slope of
the CR curve decreased by 30%.

The changes in firing rate caused by the modulatory inputs are
close to purely multiplicative gain changes (Fig. 9B). Deviations
from purely multiplicative changes are indicated by the fit pa-
rameters in Table 4. Excitatory modulatory conductance shifted
the baseline CR curve left, decreasing C50 by 19%. Inhibitory
modulatory conductance shifted the curve right, increasing the
baseline C50 by 23%.

Tuning curve
We construct a tuning curve by introducing a stimulus-driven
excitatory conductance, the magnitude of which is a Gaussian
function of a stimulus parameter � with parameters Rmax � 17.5
nS, � � 1.0, and S � 0 Hz (see Eq. 6). The modulatory inputs
were the same as for the CR curve, a 3.5 nS excitatory conduc-
tance or an 8.5 nS inhibitory conductance.

Figure 8. A, Plot of the input conductance versus average voltage (circles) for the Hodgkin–
Huxley model neuron. The solid line is a linear fit to the data, with a slope of 0.528 mV/nS and an
intercept of �67.7 mV. B, Plot of the average voltage versus firing rate (circles) for the
Hodgkin–Huxley model neuron. The voltage axis is shifted such that Vrest is 0 mV. The solid line
is a fit of f � kV 	 to the data, with k � 0.024 Hz/[mV]	 and 	 � 2.98. In both A and B, the
input is the same as the Base curve in Figure 9. Each data point represents an average of 10 trials,
5 sec each.
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Modulatory inputs have an effect on the tuning curve very
similar to that in the integrate-and-fire model (Fig. 10, compare
Fig. 4). The driving input alone produced a maximum firing rate
at � � 0.0 of 33 Hz and a minimum firing rate at � � 
2.5 of 0.7
Hz. We then added modulatory inputs to the neuron. The exci-
tatory modulatory input increased the firing rate of the neuron
for all values of �. The maximum response increased to 46 Hz,
and the firing rate at � � 
2.5 increased to 2.3 Hz. The inhibitory

modulatory input decreased the firing rate of the model neuron
for all values of �. The maximum firing rate decreased to 22 Hz,
and the firing rate at � � 
2.5 decreased to 0.18 Hz.

The changes in firing rate caused by modulatory inputs are
close to purely multiplicative gain changes (Fig. 10B). Deviations
from purely multiplicative changes are indicated by the fit pa-
rameters in Table 5. An excitatory modulatory conductance
caused a 12% increase in tuning curve width, whereas an inhibi-
tory modulatory conductance caused an 11% decrease in width.

For both the CR curve and the tuning curve, deviations from
purely multiplicative changes are in the same direction as the
integrate-and-fire model and are similar in magnitude (although
somewhat larger), which suggests that our proposed mechanism
of gain change also operates in this more detailed biophysical
model.

Discussion
The results demonstrate that changes in excitatory or inhibitory
inputs alone can approximately multiplicatively change the gain
of a neuron’s response to a stimulus-dependent input. These gain
changes observed in our model are primarily dependent on two
things: an expansive nonlinearity (a power law with exponent
substantially larger than one) relating the average membrane po-
tential and the firing rate of the neuron, and an appropriately
nonlinear dependence (e.g., sigmoidal or Gaussian) of the
stimulus-dependent input rate on the corresponding stimulus
parameter. Power–law input– output functions are likely to be
ubiquitous in cortex because of voltage noise (Arieli et al., 1996;
Paré et al., 1998; Azouz and Gray, 1999; Tsodyks et al., 1999;
Anderson et al., 2000; Hô and Destexhe, 2000; Hansel and van
Vreeswijk, 2002; Miller and Troyer, 2002), and cortical firing
rates commonly have a sigmoidal or approximately Gaussian de-
pendence on stimulus parameters. Hence, multiplicative gain
changes should be common in cortex, and convergent inputs
onto a neuron should multiplicatively modulate one another’s
gain, so long as one input (the “modulatory” input) is small
relative to the peak input evoked by the other. This seems to be a
natural result of the properties of cortical neurons and the input
that they receive and could help explain the ubiquity of such gain
changes observed experimentally (Andersen et al., 1985; Galletti
and Battaglini, 1989; Boussaoud et al., 1993; Bremmer et al.,
1997a; McAdams and Maunsell, 1999a,b; Treue and Martinez-
Trujillo, 1999; Trotter and Celebrini, 1999; Salinas and Thier,
2000).

Predictions
The most obvious prediction of our model is that at least some of
the multiplicative gain changes observed in cortex will be found
to arise from purely excitatory or purely inhibitory modulation
(or more generally, from unbalanced modulatory inputs yielding
a net excitation or inhibition). In addition, our work suggests a
number of clues that would be consistent with a mechanism in-
volving net excitation or inhibition.

Net excitatory or inhibitory modulatory inputs should cause

Figure 9. A, Plot of contrast versus firing rate for the Hodgkin–Huxley model neuron without
modulatory input (circles) and with 3.5 nS excitatory (squares) or 8.5 nS inhibitory (triangles)
modulatory conductances. Each data point represents an average of 10 trials, 5 sec each. Solid
lines are fits of the data to a hyperbolic ratio function (Eq. 5). Parameters for the fits are shown
in Table 4. B, Curves from A scaled to optimally (least squares) fit the Base curve.

Table 4. Values of the fit parameters for the solid lines in Figure 9A and the scale
factors used in Figure 9B

Rmax C50 n S Scale

Base 39.48 0.2463 1.546 0.4358 1
Exc 50.71 0.2005 1.459 2.179 1.401
Inh 28.04 0.3022 1.677 0.02561 0.6615

Parameters are defined in Equation 5. Exc, excitatory; Inh, inhibitory.

Figure 10. A, Plot of the tuning parameter in Equation 6 versus firing rate for the Hodgkin–
Huxley model neuron without modulatory input (circles) and with 3.5 nS excitatory (squares) or
8.5 nS inhibitory (triangles) modulatory conductances. Each data point represents an average of
10 trials, 5 sec each. Solid lines are fits of the data to a Gaussian function (Eq. 6). Parameter
values for the fits are shown in Table 5. B, Curves from A scaled to optimally (least squares) fit the
Base curve.

Table 5. Values of the fit parameters for the solid lines in Figure 10A and the scale
factors used in Figure 10B

Rmax � S Scale factor

Base 32.19 0.5044 0.7883 1
Exc 43.21 0.5644 2.44 1.478
Inh 21.91 0.4474 0.2701 0.6271

Parameters are defined in Equation 6. Exc, Excitatory; Inh, inhibitory.
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small systematic deviations from a purely multiplicative gain
change: gain increases should lead to decreases in C50 and in-
creases in tuning width, whereas gain decreases should yield op-
posite changes. However, the predicted deviations are small
(�10 –20%) and may not be observable in practice. Even so, this
is a fundamental prediction of our model and may become more
experimentally accessible in the future. Furthermore, the size of
the deviations should be proportional to the size of the gain
change, so larger changes in gain should give larger deviations
from multiplication. This has two important implications. First,
the deviations may become observable with sufficiently large gain
changes. Second, modulation by unbalanced inputs should yield
a correlation between the change in the amplitude of a tuning
curve and the change in its width (for Gaussian tuning curves) or
its C50 (for sigmoidal tuning curves).

We also predict that multiplicative gain changes in vivo in-
duced by unbalanced inputs should be accompanied by an up-
ward or downward shift in mean voltage, but little change in total
conductance or response variability. Such gain changes should
occur in neurons that have substantial voltage noise and, thus,
have power–law input– output functions. If the gain change is
caused by a tonic excitation or inhibition (rather than a modula-
tory excitation or inhibition that only accompanies stimulus-
induced input), then spontaneous activity levels should be mod-
ulated to the same degree as stimulus-induced responses.

Previous theory and experiment
We predict that tuning curves in cortex measured during intra-
cellular current injection will exhibit multiplicative gain changes
similar to those in our simulations. A gain decrease in the CR
functions of neurons in primary visual cortex has been observed
after injection of hyperpolarizing current (Fig. 3) (Sanchez-Vives
et al., 2000). Accompanying this gain decrease was a statistically
significant increase in the parameter C50 describing the curve
(Eq. 5), as predicted by our model.

Fox et al. (1990) examined the effects of externally applied
glutamate receptor-binding drugs on the responses of cortical
neurons to visual stimulation. They found that NMDA increased
the gain of the CR curve of the neuron, whereas quisqualate
shifted the curve upward. Our model suggests that simple depo-
larization induced by NMDA application, rather than nonlin-
earities in NMDA-induced responses, caused the gain increase.
The seemingly straightforward effects of quisqualate are more
difficult to explain. They may have been confounded by the fact
that quisqualate has a number of effects besides activating non-
NMDA ionotropic glutamate receptors, including binding to
metabotropic glutamate receptors (Pin and Duvoisin, 1995; Chu
and Hablitz, 2000) and glutamate transporters (Chase et al.,
2001). We predict that a selective agonist of AMPA receptors,
such as AMPA, would also cause a gain change.

A model proposed by Fox and Daw (1992) to account for their
experimental results assumes that quisqualate acts exclusively at
ionotropic non-NMDA receptors and that the firing rate of the
neuron is linearly related to its membrane potential. In this case,
the quisqualate-induced shifts are easily explained. However,
given a more realistic power–law relationship between mem-
brane potential and firing rate, it is difficult to account for the
shifts induced by quisqualate based on its ionotropic action
alone. To explain the effects of NMDA, they assumed cooperat-
ivity in binding between externally applied NMDA and synaptic
glutamate released during visual stimulation, which requires that
NMDA and glutamate bind to a common set of receptors. This
was not always the case in their experiments; some cells exhibited

gain increases during NMDA application, but no significant gain
change during application of APV (an antagonist of NMDA re-
ceptors), implying that both bound to nonvisual NMDA recep-
tors. In light of this, depolarization seems a more plausible expla-
nation for NMDA-induced gain changes.

Our model complements the recent model of Chance et al.
(2002). They showed that a balanced change in inhibitory and
excitatory inputs could cause a multiplicative gain change as as-
sessed by a change in a curve of firing rate versus current of a
neuron. We show that, when one instead considers the curve of
firing rate versus stimulus parameter, simple excitation alone or
inhibition alone is sufficient to produce a gain change. This gain
change is primarily dependent on the hyperpolarization or depo-
larization induced by the modulatory input, which causes only
small changes in the conductance of the cell. In contrast, the gain
changes described by Chance et al. (2002) require a relatively
large change in both current noise and total conductance. A bal-
anced change in excitation and inhibition together, as described
by Chance et al. (2002), also produces a gain change in our model
(data not shown). We conclude that a wide range of modulatory
inputs, balanced or unbalanced, should induce a multiplicative
gain change.

In cortical areas in which eye position modulates neural re-
sponses to visual stimuli, some visually driven neurons can also
be driven directly by eye position alone (Boussaoud et al., 1993;
Squatrito and Maioli, 1996, 1997; Bremmer et al., 1997a,b). Our
model explains both the modulatory and driving effects of eye
position on these neurons as resulting from a single excitatory
input. This requires that direct responses to eye position be small
relative to visual responses in such neurons, which seems consis-
tent with experiments (Bremmer et al., 1997a,b; Squatrito and
Maioli, 1997). This suggests some advantage of our proposal over
that of Chance et al. (2002), which seems to require two different
types of eye-position-evoked inputs for such neurons: a set of
balanced inhibitory and excitatory inputs that modulates the gain
of visual responses and another excitatory input that drives direct
responses to eye position.

Changes in attention have been shown to multiplicatively
scale the orientation and direction tuning curves of cortical neu-
rons (McAdams and Maunsell, 1999a,b; Treue and Martinez-
Trujillo, 1999). One interpretation of these experimental results
is that the neurons are responding with increased gain to the same
visually induced input, as in our model. However, more recent
results (Reynolds et al., 2000; Martinez-Trujillo and Treue, 2002)
show that attention can cause a shift, rather than a gain change, in
the CR function of these neurons. This suggests that the effects of
attention may represent an increase in the effective contrast of the
stimulus and not a change in the response gain of the neuron.

Treue and Martinez-Trujillo (1999) observed a slight (8%),
but not statistically significant, widening of MT direction tuning
curves during feature-based attention. This widening, if substan-
tiated by more data, would be in accordance with our model,
which predicts a widening of tuning curves with increasing gain
(Fig. 4). Changes in attention do not seem to cause changes in the
width of orientation tuning curves in area V4 (McAdams and
Maunsell, 1999a). Furthermore, although attention multiplica-
tively scaled tuning curves in V4 (including responses at nonpre-
ferred orientations), it did not systematically affect spontaneous
activity in the absence of visual stimulation. A net excitatory
modulatory input, if tonically active, would have scaled sponta-
neous activity in the same manner as stimulus-evoked activity.
Thus, if one models the effects of attention as a gain modulation
rather than an increase in effective stimulus contrast, the model
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of Chance et al. (2002) may better explain the results from area
V4. However, the widening of tuning curves in MT with attention
is more in accordance with unbalanced or purely excitatory mod-
ulation; it would be interesting to determine whether spontane-
ous activity is affected by attention in MT and to determine con-
clusively whether attention affects the width of direction tuning
curves in this area.

Our proposal is similar in spirit to that of Gabbiani et al.
(2002), who suggested that an insect neuron does multiplication
by subtracting one input from another at the level of voltages and
having an exponential input– output relationship (although they
found that a power law fit their input– output relationship better
than an exponential). However, it differs in being based on the
properties of cortical neurons.

Since this work was completed, two papers have appeared that
address the role of shunting inhibition in gain modulation. Both
highlight the importance of voltage noise. Prescott and De Kon-
inck (2003) showed in a modeling study that dendritic saturation
of the excitatory input, along with voltage noise, could cause
shunting inhibition to divisively alter firing rate. The effect of
saturation seems similar to that of a nonlinear, sigmoidal rela-
tionship between stimulus parameter and input rate in our
model. Mitchell and Silver (2003) studied a cerebellar granular
neuron that received relatively few excitatory synaptic inputs, all
of which had large unitary conductances. As a result, an increase
in input rate caused a significant increase in voltage noise. This, in
turn, caused shunting inhibition to have a partially divisive effect
on the curve of input rate versus output rate. If voltage noise does
not increase significantly with input rate, as in the present and
most previous studies of gain modulation, then shunting inhibi-
tion causes a subtractive shift in this curve (Chance et al., 2002).

Implications for neuronal computation
The question of whether a single neuron can biophysically mul-
tiply its inputs has long been of interest to those concerned with
the computational capabilities of single neurons (Torre and Pog-
gio, 1978; Mel, 1993; Koch, 1998; Gabbiani et al., 2002). We are
proposing that a cortical neuron that adds its inputs at the level of
voltages, but raises this net input to a power significantly greater
than one to produce an output, can effectively compute a multi-
plication of the inputs [or more strictly, of functions of the in-
puts: the output R is given by R � f(i1 ) g(i2 ), where i2 and i2 are
the inputs and f and g are some functions]. Furthermore if the
input voltages are nonlinear functions of a stimulus parameter,
then this multiplication will not produce a mere left or right shift
of the curve of output versus parameter. Multiplication com-
puted in this manner is only approximate. The approximation is
accurate, although small systematic differences remain, when the
modulatory input is substantially smaller than the driving input
over the range of the tuning curve in which the driving input
produces substantial responses.

Conclusion
Given a few basic assumptions about the common properties of
cortical neurons, specifically the nonlinear ways that their input
firing rates depend on the properties of a stimulus and their out-
put firing rates depend on their input, we have shown that it
should be expected that a smaller input will multiplicatively mod-
ulate the gain of the response to a larger input. No special mech-
anisms are required to account for these multiplicative interac-
tions. Although other mechanisms may also play a role in
experimentally observed gain changes, we are proposing that
multiplicative gain changes are a normal property of the cortex,

the natural outcome of these simple attributes of cortical
neurons.
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